Â鶹´«Ã½

Skip to main content
Start of main content

Improving Environmental DNA Sensitivity for Dreissenid Mussels

June 29, 2022

Current View
of

By Nathaniel Marshall

Â鶹´«Ã½¡¯s Dr. Nathaniel Marshall and associates discuss improving eDNA sensitivity for invasive mussels in the scientific journal, Water

The Cooperative Institute for Great Lakes Research (CIGLR) and the National Oceanic and Atmospheric Administration¡¯s Great Lakes Environmental Research Laboratory collaborated with Dr. Nathaniel Marshall to improve eDNA sensitivity for Dreissenid Mussels.?The recent genetic revolution through the analysis of aquatic environmental DNA (eDNA) has become a powerful tool for improving the detection of rare and/or invasive species. For the majority of eDNA studies, genetic assays are designed to target mitochondrial genes commonly referred to as ¡°barcode¡± regions. However, unlike the typical structure of an animal mitochondrial genome, those for the invasive zebra and quagga mussels are greatly expanded with large extended tandem repeat regions. These sections of repeated DNA can appear hundreds of times within the genome compared to a single copy for the mitochondrial barcode genes. This higher number of target copies per mitochondrial genome presents an opportunity to increase eDNA assay sensitivity for these species. Therefore, we designed and evaluated new eDNA assays to target the extended repeat sections for both zebra and quagga mussels.

These assays lower the limit of detection of genomic DNA by 100-fold for zebra mussels and 10-fold for quagga mussels. Additionally, these newly developed assays provided longer durations of detection during degradation mesocosm experiments and greater sensitivity for eDNA detection from water samples collected across western Lake Erie compared to standard assays targeting mitochondrial genes. This work illustrates how understanding the complete genomic structure of an organism can improve eDNA analysis.

  • Nathaniel Marshall

    Focused on the development and implementation of environmental DNA (eDNA), Nathaniel has worked on freshwater mussel conservation and the early detection of invasive species.

    Contact Nathaniel
End of main content
To top